

Scott Owens/GSFC Scott.Owens@nasa.gov

Alignment and Test Overview

- Original 18 month Alignment and Test Plan
 - Long term alignment and test plan developed in May/June '05
 - In-lab single mirror segment alignment demonstration
 - Single mirror segment pair alignment held in quasi-flight like mount
 - Tentative plan for x-ray test, January '06
 - Multiple mirror segment pair (i.e., multiple shells) alignment and x-ray imaging test at MSFC, August/September '06
- Progress so far Single mirror segment pair alignment and test
 - Performance prediction based on visible mirror segment area near requirements
 - Only 1/4 of mirror segment visible is the rest of the mirror performing as well?
 - Alignment housing modifications performed, re-alignment underway
- Plans under new budget constraints
 - Continue alignment and mirror segment figure studies
 - Delay x-ray imaging test pending budget recovery

Single mirror segment pair alignment process

- Align a single mirror segment pair using a series of successively more accurate tools
 - Contact Coordinate Measuring Machine
 - Collimated visible light focusing (ASTRO-E alignment facility)
 - Centroid Detector Assembly (CDA) to measure local slope angle and normal incidence, full aperture interferometry to measure mirror figure
 - Take mirror figure and focusing data from alignment process and predict the imaging quality, taking into account 1-g effects due to the horizontal orientation of the test
- Bond mirror segments into a test housing and perform an image test at 1.5 keV at the Stray Light Facility at MSFC
 - Bond mirror segments while monitoring the focusing and figure with CDA and interferometry
 - Perform x-ray imaging test
 - Correlate performance prediction with experimental x-ray test to verify our optical and mechanical models

Initial alignment with contact Coordinate Measuring Machine (CMM)

- Contact probe used to measure the radial position at 5 points along the top and bottom of the mirror segment
 - Flexures holding mirror are adjusted with precision set screws, while CMM monitors radial positions

Further alignment is carried out collimated using white light

- Method used for aligning ASCA, Astro-E mirrors
- Illuminate full segment using collimated beam
- Image onto CCD
- Images on and off focus provide useful information
- Align by inspecting image quality

February 15, 2006

Centroid Detector Assembly allows high resolution alignment

February 15, 2006

Uncertainties

- Performance prediction based on fitting data from visible area of mirror segment
 - HPD = 12.1"-12.8" for single mirror segment
- But, how does the remainder of the mirror segment look?

Alignment housing modifications

- Opened up front face of alignment housings to allow nearly full access for normal incidence interferometry
- Old window
 - 27 degrees wide x 150 mm tall
- New window
 - 50 degrees wide x 190 mm tall
- Mirror segments
 - 50 degrees wide x 200 mm tall
- New metrology optic conical refractive null lens
 - Can cover 36 degrees x 200 mm tall
 - 2 data sets cover entire mirror segment
- Housings have been re-integrated, and alignment process begun again
 - Constrained funds due to FY '06 reallocation will delay x-ray imaging tests

New OAP2 housing

Future plans

- Continue to use the OAP2 platform as an alignment and mounting study tool
- Study gravity sag in the vertical orientation
- Develop a mirror response matrix of mounting/alignment deformations
- Study rigid body rotational and translational imaging errors
 - How do small errors in mirror segment cutting translate into imaging errors
- Refine performance prediction software, based on data available from full aperture mapping tools